On the Asymptotic Probability of Forbidden Motifs on the Fringe of Recursive Trees

نویسندگان

  • Mohan Gopaladesikan
  • Stephan G. Wagner
  • Mark Daniel Ward
چکیده

ISSN: 1058-6458 (Print) 1944-950X (Online) Journal homepage: http://www.tandfonline.com/loi/uexm20 On the Asymptotic Probability of Forbidden Motifs on the Fringe of Recursive Trees Mohan Gopaladesikan, Stephan Wagner & Mark Daniel Ward To cite this article: Mohan Gopaladesikan, Stephan Wagner & Mark Daniel Ward (2016) On the Asymptotic Probability of Forbidden Motifs on the Fringe of Recursive Trees, Experimental Mathematics, 25:3, 237-245, DOI: 10.1080/10586458.2015.1065525 To link to this article: http://dx.doi.org/10.1080/10586458.2015.1065525

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

Asymptotic joint normality of counts of uncorrelated motifs in recursive trees

We study the fringe of random recursive trees, by analyzing the joint distribution of the counts of uncorrelated motifs. Our approach allows for finite and countably infinite collections. To be able to deal with the collection when it is infinitely countable, we use measure-theoretic themes. Each member of a collection of motifs occurs a certain number of times on the fringe. We show that these...

متن کامل

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

Stein Couplings to Show Limit Laws for Fringe Trees

The binary search tree or Quicksort is the most used of all sorting algorithm, since it is both fast and simple. The random recursive tree is another extensively studied random tree. We have examined fringe trees in these two types of random trees, since the study of such subtrees appears to be an effective approach towards defining characteristics also of the whole tree. By using a representat...

متن کامل

On the Multiplicative Zagreb Indices of Bucket Recursive‎ ‎Trees

‎Bucket recursive trees are an interesting and natural‎ ‎generalization of ordinary recursive trees and have a connection‎ to mathematical chemistry‎. ‎In this paper‎, ‎we give the lower and upper bounds for the moment generating‎ ‎function and moments of the multiplicative Zagreb indices in a‎ ‎randomly chosen bucket recursive tree of size $n$ with maximal bucket size $bgeq1$‎. Also, ‎we consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2016